INVERSE OF A MATRIX

Definition

Let A be any square matrix. If there exists another square matrix B Such that AB = BA = I (I is a unit matrix) then B is called the inverse of the matrix A and is denoted by A^{-1} .

The cofactor method is used to find the inverse of a matrix. Using matrices, the solutions of simultaneous equations are found.

Working Rule to find the inverse of the matrix

Step 1: Find the determinant of the matrix.

Step 2: If the value of the determinant is non zero proceed to find the inverse of the matrix.

1

Step 3: Find the cofactor of each element and form the cofactor matrix.

Step 4: The transpose of the cofactor matrix is the adjoint matrix.

Step 5: The inverse of the matrix
$$A^{-1} = \frac{adj(A)}{|A|}$$

Example

Find the inverse of the matrix
$$\begin{pmatrix} 1 & & 1 & & 1 \\ 1 & & 2 & & 3 \\ 1 & & 4 & & 9 \end{pmatrix}$$

Solution

Let A =
$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{pmatrix}$$

Step 1

$$\begin{vmatrix} A \\ A \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{vmatrix} = 1(18 - 12) - 1(9 - 3) + (4 - 2)$$
$$= 6 - 6 + 2 = 2 \neq 0$$

Step 2

The value of the determinant is non zero $\therefore A^{-1}$ exists.

Step 3

Let A_{ij} denote the cofactor of a_{ij} in |A|

$$A_{11} = Cofactor \ of \ 1 = (-1)^{1+1} \begin{vmatrix} 2 \\ 4 \end{vmatrix} \qquad 3 \end{vmatrix} = 18 - 12 = 6$$

$$A_{12} = Cofactor \ of \ 1 = (-1)^{1+3} \begin{vmatrix} 1 \\ 1 \end{vmatrix} \qquad 3 \end{vmatrix} = -(9 - 3) = -6$$

$$A_{13} = Cofactor \ of \ 1 = (-1)^{1+3} \begin{vmatrix} 1 \\ 1 \end{vmatrix} \qquad 2 \end{vmatrix} = 4 - 2 = 2$$

$$A_{21} = Cofactor \ of \ 1 = (-1)^{2+1} \begin{vmatrix} 1 \\ 4 \end{vmatrix} \qquad 3 \end{vmatrix} = -(9 - 4) = -5$$

$$A_{22} = Cofactor \ of \ 2 = (-1)^{2+2} \begin{vmatrix} 1 \\ 1 \end{vmatrix} \qquad 3 \end{vmatrix} = 9 - 1 = 8$$

$$A_{23} = Cofactor \ of \ 3 = (-1)^{2+3} \begin{vmatrix} 1 \\ 1 \end{vmatrix} \qquad 3 \end{vmatrix} = -(4 - 1) = -3$$

$$A_{31} = Cofactor \ of \ 1 = (-1)^{3+1} \begin{vmatrix} 1 \\ 2 \end{vmatrix} \qquad 3 \end{vmatrix} = 3 - 2 = 1$$

$$A_{32} = Cofactor \ of \ 4 = (-1)^{3+2} \begin{vmatrix} 1 \\ 1 \end{vmatrix} \qquad 3 \end{vmatrix} = -(3 - 1) = -2$$

$$A_{33} = Cofactor \ of \ 9 = (-1)^{3+3} \begin{vmatrix} 1 \\ 1 \end{vmatrix} \qquad 3 \end{vmatrix} = 2 - 1 = 1$$

Step 4

The matrix formed by cofactors of element of determinant |A| is $\begin{pmatrix} 6 & -6 & 2 \\ -5 & 8 & -3 \\ 1 & -2 & 1 \end{pmatrix}$

∴adj A =
$$\begin{pmatrix} 6 & -5 & 1 \\ -6 & 8 & -2 \\ 2 & -3 & 1 \end{pmatrix}$$

Step 5

$$A^{-1} = \frac{adj A}{|A|} = \frac{1}{2} \begin{pmatrix} 6 & -5 & 1\\ -6 & 8 & -2\\ 2 & -3 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 3 & \frac{-5}{2} & \frac{1}{2}\\ -3 & 4 & -1\\ 1 & \frac{-3}{2} & \frac{1}{2} \end{pmatrix}$$

SOLUTION OF LINEAR EQUATIONS

Let us consider a system of linear equations with three unknowns

$$a_1 x + b_1 y + c_1 z = d_1$$

 $a_2 x + b_2 y + c_2 z = d_2$
 $a_3 x + b_3 y + c_3 z = d_3$

The matrix form of the equation is AX=B where $A=\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}$ is a 3x3 matrix

$$X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}$$

Here AX = B

Pre multiplying both sides by A⁻¹.

$$(A^{-1} A)X = A^{-1}B$$

We know that A^{-1} $A = A A^{-1} = I$

since IX = X

Hence the solution is $X = A^{-1}B$.

Example

Solve the x + y + z = 1, 3x + 5y + 6z = 4, 9x + 26y + 36z = 16 by matrix method.

Solution

The given equations are x + y + z = 1,

$$3x + 5y + 6z = 4,$$

$$9x + 26y + 36z = 16$$

Let A=
$$\begin{pmatrix} 1 & 1 & 1 \\ 3 & 5 & 6 \\ 9 & 26 & 36 \end{pmatrix}$$
, X= $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$, B= $\begin{pmatrix} 1 \\ 4 \\ 16 \end{pmatrix}$

The given system of equations can be put in the form of the matrix equation AX=B

$$\begin{vmatrix} A \\ A \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 3 & 5 & 6 \\ 9 & 26 & 36 \end{vmatrix} = 1(180 - 156) - 1(108 - 54) + 1(78 - 45)$$
$$= 24 - 54 + 33 = 3 \neq 0$$

The value of the determinant is non zero

∴ A⁻¹ exists.

Let A_{ij} (i, j = 1,2,3) denote the cofactor of a_{ij} in |A|

$$A_{11} = Cofactor \ of \ 1 = (-1)^{1+1} \begin{vmatrix} 5 & 6 \\ 26 & 36 \end{vmatrix} = 180 - 156 = 24$$

$$A_{12} = Cofactor \ of \ 1 = (-1)^{1+3} \begin{vmatrix} 3 & 6 \\ 36 \end{vmatrix} = -(108 - 54) = -54$$

$$A_{13} = Cofactor \ of \ 1 = (-1)^{1+3} \begin{vmatrix} 3 & 5 \\ 9 & 26 \end{vmatrix} = 78 - 45 = 33$$

$$A_{21} = Cofactor \ of \ 3 = (-1)^{2+1} \begin{vmatrix} 1 & 1 \\ 26 & 36 \end{vmatrix} = -(36 - 26) = -10$$

$$A_{22} = Cofactor \ of \ 5 = (-1)^{2+2} \begin{vmatrix} 1 & 1 \\ 9 & 36 \end{vmatrix} = 36 - 9 = 27$$

$$A_{23} = Cofactor \ of \ 6 = (-1)^{2+3} \begin{vmatrix} 1 & 1 \\ 9 & 26 \end{vmatrix} = -(26 - 9) = -17$$

$$A_{31} = Cofactor \ of \ 26 = (-1)^{3+1} \begin{vmatrix} 1 & 1 \\ 5 & 6 \end{vmatrix} = 6 - 5 = 1$$

$$A_{32} = Cofactor \ of \ 36 = (-1)^{3+2} \begin{vmatrix} 1 & 1 \\ 3 & 6 \end{vmatrix} = -(6 - 3) = -3$$

$$A_{33} = Cofactor \ of \ 36 = (-1)^{3+3} \begin{vmatrix} 1 & 1 \\ 3 & 6 \end{vmatrix} = 5 - 3 = 2$$

The matrix formed by cofactors of element of determinant |A| is $\begin{pmatrix} 24 & -54 & 33 \\ -10 & 27 & -17 \\ 1 & -3 & 2 \end{pmatrix}$

∴ adj A =
$$\begin{pmatrix} 24 & -10 & 1 \\ -54 & 27 & -3 \\ 33 & -17 & 2 \end{pmatrix}$$

$$A^{-1} = \frac{adj A}{|A|} = \frac{1}{3} \begin{pmatrix} 24 & -10 & 1\\ -54 & 27 & -3\\ 33 & -17 & 2 \end{pmatrix}$$

We Know that $X=A^{-1}B$

$$\therefore \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 24 & -10 & 1 \\ -54 & 27 & -3 \\ 33 & -17 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 4 \\ 16 \end{pmatrix}$$
$$= \frac{1}{3} \begin{pmatrix} 24.1 + (-10)4 + 1.16 \\ (-54)1 + 27.4 + (-3)16 \\ 33.1 + (-17)4 + 2.16 \end{pmatrix}$$
$$= \frac{1}{3} \begin{pmatrix} 0 \\ 6 \\ -3 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix}$$

x = 0, y = 2, z = -1.

SOLUTION BY DETERMINANT (CRAMER'S RULE)

Let the equations be

$$\begin{cases} a_1 x + b_1 y + c_1 z = d_1 \\ a_2 x + b_2 y + c_2 z = d_2 \\ a_3 x + b_3 y + c_3 z = d_3, \end{cases}$$
 (1)

Consider the determinant

$$\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

$$\Delta_{x} = \begin{vmatrix} d_{1} & b_{1} & c_{1} \\ d_{2} & b_{2} & c_{2} \\ d_{3} & b_{3} & c_{3} \end{vmatrix} \qquad \Delta_{y} = \begin{vmatrix} a_{1} & d_{1} & c_{1} \\ a_{2} & d_{2} & c_{2} \\ a_{3} & d_{3} & c_{3} \end{vmatrix} \qquad \Delta_{z} = \begin{vmatrix} a_{1} & b_{1} & d_{1} \\ a_{2} & b_{2} & d_{2} \\ a_{3} & b_{3} & d_{3} \end{vmatrix}$$

When $\Delta \neq 0$, the unique solution is given by

$$x = \frac{\Delta_x}{\Delta}, y = \frac{\Delta_y}{\Delta}, z = \frac{\Delta_z}{\Delta}$$

Example

Solve the equations x + 2y + 5z = 23, 3x + y + 4z = 26, 6x + y + 7z = 47 by determinant method (Cramer's Rule).

Solution

The equations are

$$x + 2y + 5z = 23$$
,
 $3x + y + 4z = 26$,
 $6x + y + 7z = 47$

$$\Delta = \begin{vmatrix} 1 & 2 & 5 \\ 3 & 1 & 4 \\ 6 & 1 & 7 \end{vmatrix} = -6 \neq 0; \qquad \Delta_x = \begin{vmatrix} 23 & 2 & 5 \\ 26 & 1 & 4 \\ 47 & 1 & 7 \end{vmatrix} = -24;$$

$$\Delta_y = \begin{vmatrix} 1 & 23 & 5 \\ 3 & 26 & 4 \\ 6 & 47 & 7 \end{vmatrix} = -12 \qquad \Delta_z = \begin{vmatrix} 1 & 2 & 23 \\ 3 & 1 & 26 \\ 6 & 1 & 47 \end{vmatrix} = -18$$

By Cramer's rule

$$x = \frac{\Delta_x}{\Delta} = \frac{-24}{-6} = 4$$
$$y = \frac{\Delta_y}{\Delta} = \frac{-12}{-6} = 2$$
$$z = \frac{\Delta_z}{\Delta} = \frac{-18}{-6} = 3$$

$$\Rightarrow$$
 $x = 4$, $y = 2$, $z = 3$.